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Quantification Basic Concepts More Topics Return Behavior Interesting Facts

Science is measurement.
—- Motto of the Econometric Society

(Source: https://todayinsci.com)
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Theory without Practice is Empty;
Practice Without Theory is Blind.

—- Arguably Attributed to Immanuel Kant

What is important is the gradual development of a theory, based on a careful
analysis of the ... facts.

� ... Its first applications are necessarily to elementary problems where the
result has never been in doubt and no theory is actually required. At this
early stage the application serves to corroborate the theory.

� The next stage develops when the theory is applied to somewhat more
complicated situations in which it may already lead to a certain extent
beyond the obvious and familiar. Here theory and application
corroborate each other mutually.

� Beyond lies the field of real success: genuine prediction by theory.

It is well known that all mathematized sciences have gone through these
successive stages of evolution.

—- John von Neumann
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Looking back . . . over the long and labyrinthine path
which finally led to the discovery [of the quantum
theory], I am vividly reminded of Goethe’s saying that
men will always be making mistakes as long as they
are striving after something.

—– Max Planck
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Why Returns?

Perhaps paradoxically, we primarily analyze returns and the relations
between different returns, not prices.

1 Investors have no market power, and hence take the price
formation process as given.
� For the average investor, financial markets may be considered

close to being perfectly competitive (he/she is a price-taker).

� This means the investment technology is constant returns to scale,
so return is a scale-free summary of the investment opportunity.

� Returns are widely examined in studies on portfolio formation and
asset pricing (e.g., CAPM).
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Why Returns?

2 Technically, returns processes have more attractive statistical
properties than prices, such as stationarity and ergodicity.
� Sample moments converge to the population moments so that

economists can make sensible statistical analyses and economic
decisions.

� Covariance stationarity and ergodicity are typically assumed to
ensure such convergence for time series.

� Ludwig Boltzmann coined the term “ergodic” when he was working
on a problem in statistical mechanics. Intuitively, the state of an
ergodic process after a long time is nearly independent of its initial
state. Accordingly, new and useful information to calculate the
average and other moments continually arrives as the process
evolves.
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Simple Returns

The simple return from time t − 1 to t is

Rt ≡
Pt

Pt−1
− 1, (1)

where Pt is the asset price at time t .

Returns are scale-free, not unitless! They are always defined w.r.t.
some time interval, e.g., a year. Hence Rt is, in economic jargon, a
flow variable, more properly called a rate of return.
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Simple Gross Returns

The simple gross return from time t − 1 to t is

1 + Rt .

The asset’s gross return over the most recent k periods from time t − k
to t is

1 + Rt (k) ≡ (1 + Rt )(1 + Rt−1) · · · (1 + Rt−k+1)

=
Pt

Pt−1

Pt−1

Pt−2
· · · Pt−k+1

Pt−k
=

Pt

Pt−k
,

(2)

where the multiperiod returns are also called compound returns.
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Annualized Returns and Approximations

Among practitioners and in the financial press, returns are usually
quoted on an annual basis. Suppose we invested for k years from year
t − k to t . Then

Annualized [Rt (k)] =

[
k−1∏
i=0

(1 + Rt−i)

]1/k

− 1. (3)

A first-order Taylor expansion provides the following approximation:

Annualized [Rt (k)] =
1
k

k−1∑
i=0

Rt−i . (4)

(Hint: For f (x1, x2, ..., xk ) =
[∏k

i=1 xi

]1/k
− 1,

f (1 + Rt ,1 + Rt−1, ...,1 + Rt−k+1) ≈ f (1,1, ...,1) +
∑k

i=1 f ′xi
(1,1, ...,1)Rt−i+1.)
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A Slight Generalization

Suppose there are k years’ data and n compounding periods in a year.
Then the total number of periods is m = nk . Now,

Annualized [Rt (k)] =

[
m−1∏
i=0

(1 + Rt−i)

]1/k

− 1. (5)

The approximation becomes:

Annualized [Rt (k)] =
1
k

m−1∑
i=0

Rt−i . (6)

QUANTITATIVE FINANCE SoF, SHUFE April 1, 2020 9 / 72



Quantification Basic Concepts More Topics Return Behavior Interesting Facts

Numerical Examples

Suppose we invest for 5 years and there are 52 weeks, or 360 days, in
a year.

Annualized Return Approximation
3% per quarter (n = 4) 12.55% 12.00%
1% per month (n = 12) 12.68% 12.00%
0.2308% per week (n = 52) 12.73% 12.00%
0.0333% per day (n = 360) 12.75% 12.00%
Continuously (n→∞) 12.75% 12.00%

Depending on the volatility of returns, the approximation can be poor.
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Continuously Compounded Return

To overcome the difficulty in manipulating the geometric average in (5),
the notion of continuous compounding is developed. The continuously
compounded return or log return rt of an asset is defined as

rt ≡ ln(1 + Rt ) = ln
Pt

Pt−1
= pt − pt−1, (7)

where pt ≡ ln Pt .

The advantages of continuously compounded returns become clear:
Conversion of products to sums!

rt (k) ≡ ln(1 + Rt (k)) = ln ((1 + Rt )(1 + Rt−1) · · · (1 + Rt−k+1))

= ln(1 + Rt ) + ln(1 + Rt−1) + · · ·+ ln(1 + Rt−k+1),

= rt + rt−1 + · · ·+ rt−k+1.

(8)
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Further Discussions on Pros and Cons

Pros for continuously compounded returns:
1 In the modeling of the statistical behavior of asset returns over

time, it is far easier to derive the time-series properties of additive
processes than of multiplicative processes.

2 Limited liability is imposed in a straightforward way, as price
always stays positive under continuously compounded returns.

Pt = Pt−kexp(rt (k)) > 0.
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Further Discussions on Pros and Cons

Cons for continuously compounded returns: The simple return on a
portfolio is a value-weighted average of the simple returns on the
underlying assets, a convenient property not shared by continuously
compounded returns.
� For example, an equally-weighted portfolio consists of two assets

with R1 = 4% and R2 = 20%. Then the portfolio simple return is
Rp = 12%.
� On the contrary, rp = ln(1 + Rp) = 11.33%, but

0.5 ln(1 + R1) + 0.5 ln(1 + R2) = 11.08%.

Usually, we do not differentiate since the problem is minor, especially
when returns are measured over short time intervals. However,
conventionally, we use simple returns when studying a cross-section of
assets, and continuously compounded returns when focusing on the
time series behavior of returns.
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Dividends

If the asset pays a dividend Dt just before the price Pt is recorded at time t . The net
simple return at t is

Rt ≡
Pt + Dt

Pt−1
− 1, (9)

where Pt is the ex-dividend price at t .

The continuously compounded return on a dividend-paying asset is

rt = ln
Pt + Dt

Pt−1
, (10)

which is a nonlinear function of log price and log dividend. We can only obtain the
linearity approximately, when the dividend-price ratio is relatively stable.
Mathematically, if Dt

Pt
≈ C, where C is a constant, then

rt = ln Pt+Dt
Pt−1

≈ ln Pt+CPt
Pt−1

= ln
(
(1 + C) Pt

Pt−1

)
= ln(1 + C) + lnPt − lnPt−1.
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Excess Returns

An excess return (Zit ) is defined as the difference between an asset i ’s
return (Rit ) and the return (R0t ) on some reference asset (e.g., a
riskless asset like the 3-month treasury bill).

Zit ≡ Rit − R0t . (11)

Or, in terms of log returns,

zit ≡ rit − r0t 6= ln(1 + Zit ). (12)

The excess return can be thought of as the payoff on an arbitrage
portfolio, long asset i and short the reference asset so the net initial
investment is zero. Note that the return on the portfolio is undefined
due to zero investment but the payoff will be proportional to the excess
return.
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Question 1
A log excess return is commonly defined as the difference in log
returns, i.e., zit ≡ rit − r0t , not the log of simple excess returns, i.e.,
z ′it = ln(1 + Zit ). Compare both definitions.
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Question 1

A log excess return is commonly defined as the difference in log returns, i.e., zit ≡ rit − r0t , not
the log of simple excess returns, i.e., z′it = ln(1 + Zit ). Compare both definitions.

Suppose you long amount A of asset i and short the same amount of a riskless asset. Your
payoff will be

A(1 + Rit )− A(1 + R0t ) = AZit .

We know that
A(exp(z′it )− 1) = A (exp(ln(1 + Zit ))− 1) = AZit .

Hence in this sense, a log excess return SHOULD be defined this way.

However, conventionally,1 a log excess return is defined by zit . If we mechanically treat it as a log
return, your payoff will be

A(exp(zit )− 1) = A(exp(rit − r0t )− 1) = A
(

1 + Rit

1 + R0t
− 1

)
= A

Rit − R0t

1 + R0t
≈ AZit , for a small R0t .

(13)

Clearly, such a log excess return only approximates your payoff.
1Mainly, this gives the convenience of working with sums, instead of products.
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Uncertainty

� Uncertainty lies at the heart of financial economics.
� The theme of financial economics includes risk measurement and

management, pricing of risk, and financial decisions under
uncertainty.
� Finance without uncertainty would be superfluous.
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The Joint Distribution

Consider the returns of N assets for T years. Perhaps the most
general model of the collection of returns is its joint distribution
function:

F (R11,R21, ...,RN1; R12,R22, ...,RN2; R1T ,R2T , ...,RNT ; s|θ), (14)

where s is the vector of state variables that capture the relevant
economic environment. For instance, we simply take
s ∈ {Contraction,Expansion}, or s as time-varying return volatility. θ is
a vector of fixed parameters that uniquely determines F . Financial
econometrics focuses on inferring θ given the returns and state
variables2.

2In principle, we can estimate the parameters and state variables based solely on
the returns.
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Return Behavior Across Assets

F (R11,R21, ...,RN1; R12,R22, ...,RN2; R1T ,R2T , ...,RNT ; s|θ). (15)

� The above model is too general to be useful. Asset pricing models
provide further restrictions on F . For example, a model may
assume returns are statistically independent through time. Hence
the joint distribution of the cross-section of returns is
time-invariant. The celebrated CAPM falls into this category.
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Return Behavior Over Time

To examine the dynamics of the returns of a single asset or index (a
stock index is sometimes called an aggregate stock), we turn to the
joint distribution:

F (R1,R2, ...,RT ). (16)

Using the Bayesian rule3, the above distribution can be written as

F1(R1)F2|1(R2|R1) · · ·FT |T−1,...,1(RT |RT−1,RT−2,R1). (17)

� Return predicability relies on the temporal dependencies implicit
in Rt shown above.

3Repeatedly use F2|1(R2|R1) =
F1,2(R1,R2)

F1(R1)
.
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The Marginal/Unconditional Distribution

When predictability is a minor issue, the marginal/unconditional
distribution of returns is of interest. We most commonly assume
returns of an asset follow a temporally independently and identically
(i .i .d .) normal distribution. It delivers the convenience that sums of
normally distributed random variables are normal.
� If simple returns are normal, then they can be lower than -100%

and violate limited-liability.
� According to (2), multi-period returns cannot be normal because

they are products of simple returns.
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The Marginal/Unconditional Distribution

An alternative is to let single period simple gross returns be
lognormally distributed so that the continuously compounded or log
returns are normally distributed.
� For asset i , rit = ln(1 + Rit ) ∼ N(µi , σi), with the density function

f (rit ) = 1√
2πσi

exp
(
− (rit−µi )

2

2σ2
i

)
.

� 1 + Rit is lognormally distributed and thus has a minimum
realization of zero. The density function of 1 + Rit is
f (1 + Rit ) = 1√

2πσi (1+Rit )
exp

(
− (ln(1+Rit )−µi )

2

2σ2
i

)
.

� We can compute that

E(Rit ) = exp
(
µi +

1
2
σ2

i

)
− 1,

Var(Rit ) = (exp(σ2
i )− 1)exp(2µi + σ2

i ).
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The Lognormal Distribution

The lognormal model becomes the workhorse model of financial
economics.4 How does it perform empirically? We do tests using the
SSE Stock Composite Index and S&P 500 Index daily log returns. The
sample period is Jan. 1996 to Dec. 2019.

SSE Stock Composite Index Log Returns
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The actual return distribution is more peaked, and has fatter tails.
4Especially after the ground-breaking work of Black and Scholes (1973).
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Diagnostics

Two measures for deviations from normal distributions:

Skewness = E

[
(rit − µi)

3

σ3
i

] (
or

1
T

T∑
t=1

(rit − µ̂i)
3

σ̂3
i

)
,

Excess Kurtosis = E

[
(rit − µi)

4

σ4
i

]
− 3

(
or

1
T

T∑
t=1

(rit − µ̂i)
4

σ̂4
i

− 3

)
.
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Useful Formulas for Normal Distributions

For normal distributions, we calculate directly with the normal density
to get:

Mean = E [rit ] = µi ,

Standard Deviation =
√

E [(rit − µi)2] = σi ,

Skewness = E

[
(rit − µi)

3

σ3
i

]
= 0,

Excess Kurtosis = E

[
(rit − µi)

4

σ4
i

]
− 3 = 0.
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Diagnostics Results

Normal SSE SCI S&P 500
Skewness 0 -0.3793 -0.2649
Excess Kurtosis 0 5.2796 8.1547

At short (e.g., daily) horizons, we obtain:
� Weak evidence of skewness
� Strong evidence of excess kurtosis
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A Generalized Model

One idea is to use a mixture of normal distributions, perhaps because
of time-varying volatility. Let consider a simple case of only two
volatility levels, one corresponding to high volatility during market
turbulence and one corresponding to low volatility during “quiet”
periods. Then the density function is

f (rit ) = pL
1√

2πσiL
exp

(
−(rit − µi)

2

2σ2
iL

)

+ (1− pL)
1√

2πσiH
exp

(
−(rit − µi)

2

2σ2
iH

)
,

(18)

where pL is the probability of low volatility and it mixes the two normal
densities. Obviously, 0 ≤ pL ≤ 1.
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To get further insights, we need to estimate the new parameters pL,
σiL, and σiH . How? One approach is the Maximum Likelihood
Estimation (MLE).

We do not go into deep theory, but illustrate the steps in MLE.
1 Derive the log likelihood function logL (why log?). In our case,

logL = ln
T∏

t=1

f (rit ) =
T∑

t=1

ln f (rit ).

2 Choose some sensible initial parameter values for pL, µi , σiL, and
σiH . Solve

max
pL,µi ,σiL,σiH

logL.

See the spreadsheet mnormal.xlsx for implementation using excel
solver.
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Useful Formulas

We use φ(rit , µi , σi) = 1√
2πσi

exp
(
− (rit−µi )

2

2σ2
i

)
to denote the normal

density with mean µi and standard deviation σi .

Then the density function of a normal mixture distribution is

f (rit ) = pLφ(rit , µi , σiL) + (1− pL)φ(rit , µi , σiH). (19)

And

Mean = E [rit ] =

∫ +∞

−∞
rit f (rit )drit

= pL

∫ +∞

−∞
ritφ(rit , µi , σiL)drit + (1− pL)

∫ +∞

−∞
ritφ(rit , µi , σiH)drit

= pLµi + (1− pL)µi

= µi .

(20)
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Useful Formulas - Continued

Variance σ2
i = E

[
(rit − µi)

2
]

=

∫ +∞

−∞
(rit − µi)

2f (rit )drit ,

= pL

∫ +∞

−∞
(rit − µi)

2φ(rit , µi , σiL)drit

+ (1− pL)

∫ +∞

−∞
(rit − µi)

2φ(rit , µi , σiH)drit

= pLσ
2
iL + (1− pL)σ2

iH .

(21)
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Useful Formulas - Continued

E
[
(rit − µi)

3
]

=

∫ +∞

−∞
(rit − µi)

3f (rit )drit ,

= pL

∫ +∞

−∞
(rit − µi)

3φ(rit , µi , σiL)drit

+ (1− pL)

∫ +∞

−∞
(rit − µi)

3φ(rit , µi , σiH)drit

= pL × 0 + (1− pL)× 0
= 0.

Skewness = E

[
(rit − µi)

3

σ3
i

]
= 0.

(22)
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Useful Formulas - Continued

E
[
(rit − µi)

4
]

=

∫ +∞

−∞
(rit − µi)

4f (rit )drit ,

= pL

∫ +∞

−∞
(rit − µi)

4φ(rit , µi , σiL)drit

+ (1− pL)

∫ +∞

−∞
(rit − µi)

4φ(rit , µi , σiH)drit

= pL × 3σ4
iL + (1− pL)× 3σ4

iH .

Excess Kurtosis = E

[
(rit − µi)

4

σ4
i

]
− 3

=
3(pLσ

4
iL + (1− pL)σ4

iH)

(pLσ
2
iL + (1− pL)σ2

iH)2
− 3.

(23)
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Discussion on the Kurtosis Formula

Excess Kurtosis = 3

(
pLσ

4
iL + (1− pL)σ4

iH

(pLσ
2
iL + (1− pL)σ2

iH)2
− 1

)
. (24)

For the non-trivial case of 0 < pL < 1, then
� Excess Kurtosis is 0 when σiL = σiH .
� Furthermore, Excess Kurtosis is minimized when σiL = σiH .
� We can show that

pLσ
4
iL + (1− pL)σ4

iH − (pLσ
2
iL + (1− pL)σ2

iH)2

= pL(1− pL)(σ2
iL − σ

2
iH)2 ≥ 0.

(25)

Hence, other than the trivial case of degeneration (σiL = σiH ), we
always have Excess Kurtosis > 0.
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Results

Here are the results for SSE Stock Composite Index.

pL = 0.726778, µi = 0.000593,
σiL = 0.009196, σiH = 0.027834.

Data Normal Mixed Normal
Mean 0.00029 0.00029 0.00059
St. Dev. 0.01653 0.01653 0.01653
Skewness -0.3793 0 0.0000
Excess Kurtosis 5.2796 0 3.8036
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Normal v.s. Mixed Normal

SSE Stock Composite Index Log Returns
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Further Extending the Analysis

Now we allow for different µiL and µiH . This could make the model
asymmetric thus we can also fit the skewness. Then the density
function of the full model is

f (rit ) = pL
1√

2πσiL
exp

(
−(rit − µiL)2

2σ2
iL

)

+ (1− pL)
1√

2πσiH
exp

(
−(rit − µiH)2

2σ2
iH

) (26)

See the spreadsheet mnormal ex.xlsx for implementation using excel
solver.
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Useful Formulas

The density function of a full normal mixture distribution is

f (rit ) = pLφ(rit , µiL, σiL) + (1− pL)φ(rit , µiH , σiH). (27)

And

µi = E [rit ] =

∫ +∞

−∞
rit f (rit )drit

= pL

∫ +∞

−∞
ritφ(rit , µiL, σiL)drit

+ (1− pL)

∫ +∞

−∞
ritφ(rit , µiH , σiH)drit

= pLµiL + (1− pL)µiH .

(28)
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Useful Formulas - Continued

σ2
i = E

[
(rit − µi )

2] =

∫ +∞

−∞
(rit − µi )

2f (rit )drit ,

= pL

∫ +∞

−∞
(rit − µi )

2φ(rit , µiL, σiL)drit

+ (1− pL)

∫ +∞

−∞
(rit − µi )

2φ(rit , µiH , σiH)drit

= pL

∫ +∞

−∞
((rit − µiL) + (µiL − µi ))2φ(rit , µiL, σiL)drit

+ (1− pL)

∫ +∞

−∞
((rit − µiH) + (µiH − µi ))2φ(rit , µiH , σiH)drit

= pL(σ2
iL + (µiL − µi )

2) + (1− pL)(σ2
iH + (µiH − µi )

2)

= pLσ
2
iL + (1− pL)σ2

iH + pL(1− pL)(µiL − µiH)2︸ ︷︷ ︸
An additional term due to difference in means, ≥ 0

.

(29)
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Useful Formulas - Continued

E
[
(rit − µi )

3] =

∫ +∞

−∞
(rit − µi )

3f (rit )drit ,

= pL

∫ +∞

−∞
(rit − µi )

3φ(rit , µiL, σiL)drit

+ (1− pL)

∫ +∞

−∞
(rit − µi )

3φ(rit , µiH , σiH)drit

= pL

∫ +∞

−∞
((rit − µiL) + (µiL − µi ))3φ(rit , µiL, σiL)drit

+ (1− pL)

∫ +∞

−∞
((rit − µiH) + (µiH − µi ))3φ(rit , µiH , σiH)drit

= pL(3(µiL − µi )σ
2
iL + (µiL − µi )

3)

+ (1− pL)(3(µiH − µi )σ
2
iH + (µiH − µi )

3).

(30)
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Discussion on the Skewness Formula

E
[
(rit − µi)

3
]

= 3pL(1− pL)(σ2
iL − σ

2
iH)(µiL − µiH)

+ pL(1− pL)(1− 2pL)(µiL − µiH)3.
(31)

For non-trivial pL ∈ (0,1), there are three special cases.
1 Equal mean: If µiL = µiH , Skewness = 0.
2 Equal standard deviation: If σiL = σiH ,

Skewness = pL(1− pL)(1− 2pL)(µiL − µiH)3 and depends on
which normal distribution has a higher weight.

3 Equal weight: If pL = 0.5,
Skewness = 3pL(1− pL)(µiL − µiH)(σ2

iL − σ
2
iH) and depends on

which one has a higher dispersion (standard deviation).
Generally, the Skewness is flexible. It can be positive or negative or
zero, depending on all the parameters.
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Useful Formulas - Continued

E
[
(rit − µi )

4] =

∫ +∞

−∞
(rit − µi )

4f (rit )drit ,

= pL

∫ +∞

−∞
(rit − µi )

4φ(rit , µiL, σiL)drit

+ (1− pL)

∫ +∞

−∞
(rit − µi )

4φ(rit , µiH , σiH)drit

= pL

∫ +∞

−∞
((rit − µiL) + (µiL − µi ))4φ(rit , µiL, σiL)drit

+ (1− pL)

∫ +∞

−∞
((rit − µiH) + (µiH − µi ))4φ(rit , µiH , σiH)drit

= pL(3σ4
iL + 6(µiL − µi )

2σ2
iL + (µiL − µi )

4)

+ (1− pL)(3σ4
iH + 6(µiH − µi )

2σ2
iH + (µiH − µi )

4).

(32)
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Discussion on the Kurtosis Formula

E
[
(rit − µi)

4
]

= 3(pLσ
4
iL + (1− pL)σ4

iH)︸ ︷︷ ︸
The old term due to difference in standard deviations

+ 6pL(1− pL)((1− pL)σ2
iL + pLσ

2
iH)(µiL − µiH)2︸ ︷︷ ︸

A new term from difference in means, ≥ 0

+ pL(1− pL)(p3
L + (1− pL)3)(µiL − µiH)4︸ ︷︷ ︸

A new term from difference in means, ≥ 0

.

(33)

For the non-trivial case of 0 < pL < 1, this numerator further increases
as long as µiL 6= µiH .
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Results for the Extended Analysis

pL = 0.730568,
µiL = 0.000774, µiH = −0.001021,
σiL = 0.009248, σiH = 0.027913.

Data Normal Mixed Normal Full Model
Mean 0.00029 0.00029 0.00059 0.00029
St. Dev. 0.01653 0.01653 0.01653 0.01652
Skewness -0.3793 0 0.0000 -0.1631
Excess Kurtosis 5.2796 0 3.8036 3.8270
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Normal v.s. Mixed Normal
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Exercise 1

Repeat the analysis using the S&P 500 index daily returns data in the
spreadsheet SP500.xlsx.
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Growth of Mean and Variance Over Time

Suppose monthly (log) returns Rm follow an identical and independent
normal distribution with mean µm and standard deviation σm. Let Ry be
the corresponding yearly return thus Ry =

∑12
t=1 Rmt .

Then

µy ≡ E [Ry ] = E

[
12∑

t=1

Rmt

]
=

12∑
t=1

E [Rmt ] = 12µm. (34)

And

σ2
y ≡ Var [Ry ] = E

( 12∑
t=1

Rmt − µy

)2 =
12∑

t=1

E
[
(Rmt − µm)2

]
= 12σ2

m.

(35)
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Equivalently,

µm =
1

12
µy ,

σm =
1√
12
σy .

Generally, if we divide a year into p subperiods, then

µp =
1
p
µy ,

σp =
1
√

p
σy .

The square root lies at the heart of our discussions in the following.
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The Effect of Data Frequency

µp

σp
=

1
√

p
µy

σy
. (36)

As we measure asset returns more frequently (µy
σy

is held constant), we
reduce the time interval and increase p. This has an effect on the
above mean-standard deviation ratio. The mean falls quickly while the
standard deviation relatively slowly thanks to the square root. Hence
the ratio decreases.
� Over a short time interval, noise dominates signal. That is,

standard deviation dominates the expected value.
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Numeric Examples

Take µy = 12% and σy = 20%. And there are 4 quarters, 12 months,
52 weeks, or 252 trading days in a year. To the extreme, the highest
frequency of returns data used in market microstructure studies is one
per minute.5 The stock market opens for 4 hours on a normal trading
day. Then there are 60480 trading minutes in a year.

5At an even higher frequency, market microstructural effects, such as price
discreteness and bid-ask bounce, will set in and returns will measure things besides
changes in valuation.
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Numeric Examples

Yearly Quarterly Monthly Weekly Daily Per Minute
µ 12% 3% 1% 0.23% 0.048% 0.00020%
σ 20% 10% 5.77% 2.77% 1.26% 0.081%
µ/σ 0.6 0.3 0.17 0.083 0.038 0.0024
σ/µ 1.67 3.33 5.77 12.02 26.46 409.88

� The mean is miserable compared to the standard deviation at the
1-minute level.6

� Our common sense also has that the stock price moves around
from minute to minute. (Like a shark?)
� At the daily level, the standard deviation is still 26 times of the

mean.

6This is the reason the market microstructure studies usually neglect the mean.
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Another implication is that estimation of means are very difficult.
First consider yearly returns.
� Returns are i.i.d. normal thus stationary.
� We have T years of data.
� Then our estimate of the mean is

µ̂y =
1
T

T∑
t=1

Ryt .

The estimate is unbiased as Eµ̂y = µy .
� The standard deviation of our estimate is

σµ̂y =
√

E
[
(µ̂y − µy )2

]
=

√√√√√E

( 1
T

T∑
t=1

(Ryt − µy )

)2 =
σy√

T
,

which is the estimation error in the mean.
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An Illustration

Again, Take µy = 12% and σy = 20%. Suppose we have 4 years’ data.
Recall

σµ̂y =
σy√

T
=

20%√
4

= 10%.

The estimation is close to the mean. A 95% confidence interval for the
mean is (-8%, 32%). The is too coarse to be of use.

A good estimate may have a standard deviation one-tenth of the mean.
To reach this criterion, we can compute that the length of data should

be no less than T =
(

10σy
µy

)2
= 278 years. We hardly have one stock

market with such a long history. To make things worse, the mean and
standard deviation vary a lot in the long run. Hence the stationarity
assumption is likely to be true only for a much shorter time.
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Does High Frequency Data Help?

We have illustrated the mean blur using yearly returns. However, we
do have higher frequency returns data readily available in the market.

Question 2
What if we switch to daily data?

QUANTITATIVE FINANCE SoF, SHUFE April 1, 2020 54 / 72



Quantification Basic Concepts More Topics Return Behavior Interesting Facts

Does High Frequency Data Help?

Question 2
What if we switch to daily data?

At daily frequency,

µd =
12%

252
= 0.048%, σd =

20%√
252

= 1.26%.

Similarly, we have E [µ̂d ] = 0.048%. If we have T years’ data,
σµ̂d = 1.26%√

252T
. To get an error that is one-tenth of the mean, we need

again T = 278 years’ data. Increasing the data frequency does not
help at all! (Show it for any data frequency by yourself.)
� The only way to obtain a more accurate estimate for the mean is

to have a longer time series. Most of the times, there is nothing to
do for this other than to wait.
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Higher Moments

Higher moments are a lot easier. Let’s instance this with variance.
Consider a sample of returns Rt ∼ i .i .d . N(µ, σ) with T observations.
Then

µ̂ =
1
T

T∑
t=1

Rt ,

σ̂2 =
1

T − 1

T∑
t=1

(Rt − µ̂)2.

E
[
σ̂2] = σ2. The variance of this variance estimate7 is

σ2
σ̂2 =

2σ4

T − 1
. ⇒ σσ̂2 =

√
2σ2

√
T − 1

.

7Here, σ̂2 follows a χ2 distribution with (T − 1) degrees of freedom. Hence the
variance needs to be understood with this in mind.
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Derivations for σ2
σ̂2

We repeatedly use the following three results:
1 For any normally distributed variable x with mean µ and variance
σ2, E [(x − µ)n] = 0 if n is odd, and
E [(x − µ)n] = σn(n − 1)(n − 3) · · · 1 if n is even.

2
(∑T

i=1 Ai

)2
=
∑T

i=1
∑T

j=1 AiAj =
∑T

i=1

(
Ai
∑T

j=1 Aj

)
=∑T

i=1 Ai
∑T

j=1 Aj .
3

E
[
(Rt − µ̂)2

]
= E

[
((Rt − µ)− (µ̂− µ))2

]
= E

[
(Rt − µ)2 − 2(Rt − µ)(µ̂− µ) + (µ̂− µ)2

]
= σ2 − 2

T
σ2 +

1
T
σ2 =

T − 1
T

σ2.
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Derivations for σ2
σ̂2 - Continued

σ
2
σ̂2 = E

 1

T − 1

T∑
t=1

(Rt − µ̂)
2 − σ2

2

=
1

(T − 1)2
E

 T∑
t=1

(
(Rt − µ̂)

2 −
T − 1

T
σ

2
)2

=
1

(T − 1)2
E

 T∑
i=1

T∑
j=1

(
(Ri − µ̂)

2 −
T − 1

T
σ

2
)(

(Rj − µ̂)
2 −

T − 1

T
σ

2
)

=
1

(T − 1)2
E

 T∑
i=1

T∑
j=1

(
(Ri − µ̂)

2(Rj − µ̂)
2 −

T − 1

T
σ

2((Ri − µ̂)
2 + (Rj − µ̂)

2) +
(T − 1)2

T 2
σ

4
)

=
1

(T − 1)2
E


T∑

i=1

T∑
j=1

(Ri − µ̂)
2(Rj − µ̂)

2

︸ ︷︷ ︸
3©

−
T − 1

T
σ

2
T∑

i=1

T∑
j=1

((Ri − µ̂)
2 + (Rj − µ̂)

2)

︸ ︷︷ ︸
2©

+
(T − 1)2

T 2
σ

4
T∑

i=1

T∑
j=1

1

︸ ︷︷ ︸
1©


.
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Derivations for σ2
σ̂2 - Continued

σ
2
σ̂2 =

1

(T − 1)2
E [ 3© + 2© + 1©] .

E [ 1©] = (T − 1)2σ4
.

E [ 2©] = −
T − 1

T
σ

2

 T∑
i=1

T∑
j=1

E(Ri − µ̂)
2 +

T∑
i=1

T∑
j=1

E(Rj − µ̂)
2


= −

T − 1

T
σ

2 × 2T 2 ×
T − 1

T
σ

2

= −2(T − 1)2σ4
.
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Derivations for σ2
σ̂2 - Continued

E [ 3©] = E

 T∑
i=1

(Ri − µ̂)
2

T∑
j=1

((Rj − µ)− (µ̂− µ))2


= E

 T∑
i=1

(Ri − µ̂)
2

 T∑
j=1

(Rj − µ)
2 − 2(µ̂− µ)

T∑
j=1

(Rj − µ) +
T∑

j=1

(µ̂− µ)2


= E

 T∑
i=1

(Ri − µ̂)
2

 T∑
j=1

(Rj − µ)
2 − T (µ̂− µ)2


= E

 T∑
i=1

(Ri − µ)
2 − T (µ̂− µ)2

 T∑
j=1

(Rj − µ)
2 − T (µ̂− µ)2



= E


T∑

i=1

(Ri − µ)
2

T∑
j=1

(Rj − µ)
2

︸ ︷︷ ︸
5©

−T (µ̂− µ)2
 T∑

i=1

(Ri − µ)
2 +

T∑
j=1

(Rj − µ)
2


︸ ︷︷ ︸

6©

+T 2(µ̂− µ)4︸ ︷︷ ︸
4©


.
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Derivations for σ2
σ̂2 - Continued

E [ 3©] = E [ 5© + 6© + 4©] .

E [ 4©] = (T 2)× 3
(
σ
√

T

)4
= 3σ4

.

E [ 5©] =
T∑

i=1

T∑
j=1

E
[
(Ri − µ)

2(Rj − µ)
2
]

= T × 3σ4 + T (T − 1)× σ4 = T (T + 2)σ4
.

E [ 6©] = −
2

T
E

 T∑
j=1

(Rj − µ)

2  T∑
i=1

(Ri − µ)
2


= −

2

T
E

 T∑
j=1

T∑
k=1

(Rj − µ)(Rk − µ)

 T∑
i=1

(Ri − µ)
2


= −

2

T
E

 T∑
j=1

T∑
k=1

T∑
i=1

(Rj − µ)(Rk − µ)(Ri − µ)
2


= T × 3σ4︸ ︷︷ ︸

j = k = i

+ T (T − 1)× σ4︸ ︷︷ ︸
j = k 6= i

+ (T 3 − T − T (T − 1))× 0︸ ︷︷ ︸
j 6= k

= −2(T + 2)σ4
.
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Derivations for σ2
σ̂2 - Continued

Finally,

σ
2
σ̂2 =

1

(T − 1)2
E [ 1© + 2© + 4© + 5© + 6©]

=
2σ4

T − 1
.
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The proportion of error in variance estimate to variance is

σσ̂2

σ2 =

√
2√

T − 1
, (37)

which is determined solely by T .
For yearly data, if we impose the one-tenth rule again, we get T = 201
years. Better. Not that impressive? Fortunately, this is not the end of
story!
� We can always increase the accuracy by increasing the data

frequency.
� We need to generalize (37) a little to account for sampling

frequency.
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A Comparison

Now we compare estimation of first and second moments in detail for
an arbitrary data frequency. Suppose we have p (equally spaced)
subperiods in a year and T years of data.

σµ̂p =
σp√
pT

,
σµ̂p

µp
=

σp

µp
√

pT
=

σy/
√

p
(µy/p)

√
pT

=
σy

µy
· 1√

T
,

σσ̂2
p

=

√
2σ2

p√
pT − 1

,
σσ̂2

p

σ2
p

=

√
2√

pT − 1
.

� Clearly, the error ratio of the mean only depends on T , while that
of the variance also depends on p.
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Numerical Examples

Take the previous numbers. There are 252 trading days in a year.
Daily returns are i .i .d . normal with µd = 0.048% and σd = 1.26%.
Simulate 10 years of daily returns. Then calculate µ̂d and σ̂d for each
year. Here is the results.

Year1 Year2 Year3 Year4 Year5 Year6 Year7 Year8 Year9 Year10 Mean St.Dev.

µ̂d 0.021 -0.085 0.005 -0.041 0.071 0.067 0.021 0.024 -0.024 0.085 0.014 0.054

σ̂d 1.24 1.29 1.27 1.30 1.21 1.25 1.20 1.26 1.22 1.26 1.25 0.035
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Other Side of the Coin

We have shown that during a short time interval, mean return is much
smaller than the variance. How about long term returns?
We repeat (36) here.

µp

σp
=

1
√

p
µy

σy
.

As we measure asset returns less frequently (µy
σy

is held constant), we
increase the time interval and decrease p. (p < 1 means returns over
multiple years.)
The ratio could be very high for a very small p. That is, in the very long
term, the mean will in fact dominate the variance. The signal will show
up no matter how feeble it is or how rampant the noise is, as long as
we give it enough time!
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Numeric Example

Take µy = 12% and σy = 20%. Simulate returns for 100 years. We
repeat for 1000 times to get 1000 alternative histories.
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Diversification

Let’s take another asset with µy = 10% and σy = 60%. Investing in it
for 100 years, you expect to make a lot of money (to be exact, a log
return of 1000% = a simple return of 2202500%). Run a similar
simulation.

You still have a significant chance of losing money.
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Question 3
What is the probability of losing money?
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Question 3
What is the probability of losing money?

Investing for 100 years, the gross log return r100 is normally distributed
with µ100 = 100µy = 1000% and σ100 =

√
100σy = 600%.

Then

Prob.(losing money) = Prob.(r100 < 0)

= Prob.
(

r100 − µ100

σ100
< −µ100

σ100

)
= Φ(−µ100

σ100
) = Φ(−1.67) ≈ 5%,

where Φ(·) is the standard normal cumulative distribution function.
We can also find the loss probability by simulation. See the
spreadsheets SimuStock.xlsm and SingleAsset.xlsm.
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Diversification - Continued

Now take an equally-weight portfolio of two of the assets, each with
µy = 10% and σy = 60%. The returns of the asset are independent.
Investing in the portfolio for 100 years, you expect to make a similar
amount of a lot of money.

Remember that the portfolio return is not the weighted average of the
underlying returns, when we are using log returns.
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Exercise 2

What is the probability of losing money when investing in the portfolio?

(See the spreadsheets Portfolio.xlsm.)

If you find a very slim chance of losing money, then try µy = −3.49%
and σy = 51.04% such that the simple returns have µy = 10% and
σy = 60%.
What is the probability of losing money now?
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